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ABSTRACT 
 
SystemVerilog is an extension to IEEE 1364-2001 "Verilog-2001" standard, which is 
positioned by EDA vendors as a new unified language for IC design and verification. In 
addition to SystemVerilog constructs that provide increased engineer productivity through 
higher level of abstractions, SystemVerilog is intended to improve communication between 
design and verification teams. SystemVerilog simulation is expected to be faster than 
simulation of a heterogeneous testbench, i.e. design written in Verilog and VIP written in 
Vera. In brief, SystemVerilog becomes a promising means of verification for the future use in 
the semiconductor industry. 

Currently there is no full support of SystemVerilog by EDA tools. However, limited syntax is 
implemented in the VCS compiler and simulator, which are commonly used in Motorola. 
This paper reports about our trial building of a SystemVerilog testbench, discusses pros and 
cons and thus considers actual SystemVerilog status and effectiveness of the language 
utilization at its current state. SystemVerilog comparison with existing technology based on 
the use of Vera language is also performed in the paper.  
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1.0  Introduction 
Over the past several years, the growing complexity of electronic system-on-chip devices has 
made it harder and harder to make designs that are robust, reliable, and bug-free. Many 
sources give the ratio 20% to 80% of the time for IC development and verification. With 
growing complexity of SoCs, the same has been going on with testbenches and verification 
methodology. Starting from pure HDL testbenches and vector sets, IC verification means 
grew up to transaction based systems which include such complex blocks as bus drivers, 
interface monitors, reference models, response checkers and so on. Test sequences have 
become written at a higher level of abstraction. More recently, random sequence generators 
have come to life. They allow generating and sending transactions to DUV in random order. 
Transaction based verification methodology gave birth to variety of tools supporting it. C or 
C++ based libraries and BFMs, TestBuilder from Cadence, VERA from Synopsys – all of 
them bring opportunity for verification engineers to build effective test environment. 
However they all have one big minus – they are proprietary tools and they are not based upon 
any industry standard, as compared to the design world living with either Verilog or VHDL 
standards, or both of them, but no more. Another minus of those tools is that they all get 
connected to the HDL world via a PLI interface, which is good, but appears to be a little bit 
slow in comparison with pure HDL code. Hence that’s the price we pay for building complex 
testbenches with nice tools – these are simulation speed and non-portable code.  
An ideal solution for verification engineers would be a language which has the following 
features: 

• easily integrated with DUV; 
• supports sequential operation; 
• supports multi-threading; 
• supports randomization and has a constraint solver; 
• supports high level of abstraction and design hierarchy; 
• is an industry standard and supported by several EDA vendors. 

According to its specification, SystemVerilog seems to be the language that matches these 
criteria: 

• it is a unified language for design and verification – an HDVL; 
• it has built-in support for sequential operators and fork – join constructions; 
• it provides OOP support and thus is well structured; 
• it is an Accellera standard and pushed to IEEE for standardization; 
• many EDA vendors already include SystemVerilog support in their products, or plan 

to do it in the near future. 
Synopsys as a major EDA vendor added SystemVerilog support in its VCS design and 
simulation tool starting from version 7.1, and continues improving SystemVerilog standard 
language coverage in every new version. Since VCS is a main tool used in Motorola / 
Freescale Semiconductor for RTL design and simulation, it is important to keep new 
opportunities on track. This paper is a result of an attempt to get basic knowledge about 
SystemVerilog, with a goal to evaluate its current status, advantages and disadvantages, and 
compare this tool with existing technology and verification flow based upon using of Vera 
language.  
 
2.0  Verification Means of SystemVerilog 
SystemVerilog is an extension of the Verilog Hardware Description Language with the 
higher level of abstraction for modeling and verification. A lot of high level constructs were 
added into the language and more were derived from C/C++ and Java. Logically these new 
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constructs can be divided into two groups: constructs dedicated to modeling and constructs 
dedicated to verification. Let’s consider the most important innovations in SystemVerilog 
which create verification power in the language. 

• Program block serves as a clear separator between DUV and the testbench. It 
specifies execution semantics for all elements declared within the test program. It 
operates as an entry point for the test program where verification engineer programs 
the sequence of stimulus and expected response from the DUV. Together with 
clocking domains, the program block provides race-free interaction between the 
design and the testbench.  

 
Figure 1. Program Block in a Testbench 

• Clocking domain construct identifies clock signals, and captures the timing and 
synchronization requirements of the blocks being verified. A clocking domain 
assembles signals that are synchronous to a particular clock, and makes their timing 
explicit in terms of sampling and driving relative to the clock. This eliminates the risk 
of having races in the testbench when a signal is sampled and driven at the same 
moment. Therefore clocking domains play a key role in a cycle-based methodology. 
Clocking domains separate timing and synchronization details from the structural, 
functional, and procedural elements of a testbench.  

 
Figure 2. Clocking Domain Example 
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• Classes and object-oriented programming (OOP) in SystemVerilog offer abstract type 
modeling, which brings the advantages of the object-oriented paradigm successfully 
utilized in to software world in C++ and Java languages. The main advantages of the 
OOP over conventional approaches are: 

 OOP provides a clear modular structure for programs which makes it good for 
defining abstract data types where implementation details are hidden and the 
unit has a clearly defined interface.  

 OOP makes it easy to maintain and modify existing code as new objects can 
be created with small differences to existing ones.  

 OOP provides a good framework for code libraries where supplied software 
components can be easily adapted and modified by the programmer. 

 
Figure 3. Class Definition Example 

Classes significantly decrease the dependency of SystemVerilog on the other 
languages and make it possible to create complex native models without importing C 
or C++ components in the testbench, thus improving simulation performance, and, as 
a result, shortening verification cycle time. 

• Direct Programming Interface (DPI) makes possible exporting and importing tasks 
and functions to other languages, such as C or C++. It is not a secret that a lot of 
models already exist written in C or C++. In order to achieve high level of reuse and 
thus shortening verification cycle time, using the DPI is encouraged as DPI allows 
direct inter-language function calls between the languages. The usage of imported 
functions is identical as for native SystemVerilog functions with the help of DPI. For 
now, however, SystemVerilog 3.1 defines DPI foreign language layer only for the C 
programming language, which still covers a lot of existing verification IP 
components. 
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• Multithreading is extremely important for verification as usually test programs consist 
of issuing concurrent sequences of transactions on various DUT interfaces. Fork … 
join SystemVerilog constructions derived from C and Java are intended to simplify 
development of concurrency. 

• Interfaces allow encapsulating communication protocol signals and behavior in a 
variety of modes (i.e. master or slave, single beat or burst etc.). They appear as a 
special kind of classes where signals play the role of internal data structure. Interfaces 
do not prohibit direct access to the signals. However, the definition and using of the 
interface methods makes the code more structural, readable and maintainable. 
Modports are another useful component of interfaces, which enable engineers to 
define various operational modes of the interfaces, as shown on Figure 4. 

 

 
Figure 4. Interface and Modport Example 

Interfaces are assumed to be defined by the DUV designers. However they may also 
be developed by verification engineers and include protocol checking mechanisms.  
Though interfaces are similar to classes, they are missing inheritance and 
polymorphism features, which would be convenient when interface specification 
changes. For example, if the ARM AHB specification is extended to AHBv6, it would 
be more logical to build AHBv6 interface on the basis of AHB by adding or changing 
signals, methods and modports, rather than to write the AHBv6 interface from scratch. 

• Random generator and constraint solver. Random verification is a very important part 
of the verification strategy, since it allows to: 

 Generate more tests in the same amount of time. Comprehensive verification 
of today’s complex SoCs requires many tests, and random generation of 
patterns is a viable solution to target this problem.  

 Discover corner case situations and bugs. 
The ability of a programming language to generate random values and sequences 
bordered by a number of constraints play important role in selection of the language 
for verification purposes. Certainly general purpose languages have functions for 
generating random numbers. A big and non-trivial part of the work of verification 
team though is constraint solver development or reuse. Languages dedicated to 
verification such as Synopsys Vera or Cadence TestBuilder already have built-in 
constraint solvers, which can be better or worse in terms of performance, but basically 
it solves the problem of constrained randomization and lets verification engineers 
concentrate on their main tasks. SystemVerilog also has a built-in random constraint 
solver and allows users to declare constraints as shown on Figure 5, which are then 
processed by the solver that generates random values and sequences. 
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Figure 5. Constraint Declaration Example 

• Assertions are expressions specifying the state of a design that must exist at one or 
more specific points during execution. Assertions can be used to specify the 
designer's intent and thus improve robustness of the design. The way assertions are 
used for verification is raising exceptions or fault reports when violated.  
SystemVerilog assertions can be immediate or concurrent. The former evaluate 
expressions along with the code they are inserted in, and according to the general 
model simulation rules. The latter provide a mechanism for sampling signal values on 
clock ticks independently of the simulator, evaluating them with respect to the other 
signal values and reporting about the error if necessary. Thus concurrent assertions 
enable checking signal behavior in a non-zero time frame.  
Though SystemVerilog assertions are primarily used to validate the behavior of a 
model by design engineers, they can also be used by verification teams for interface 
physical protocol checking. However, assertions are not applicable for packet based 
protocols verification, where functional coverage measurement helps significantly. 

• Coverage measurement. Statement, toggle, FSM, assertion and functional coverage 
types supported by SystemVerilog provide a means for coverage driven verification. 
Coverage is based upon counting occurrences of user-specified events, i.e. a pin 
toggle from 0 to 1 or vice versa, entering certain FSM a state or having all 1’s on a 
data bus. Covergroup construction allows the specification of 

 coverage points for variables, expression and transitions; 
 cross coverage measurement, when aggregated events are counted; 
 sampling expression, which determines the moment for the checking events 

for occurrence.  
With the definition of the events to monitor and the definition of the coverage goals 
(number of hit events), the verification engineer is able to have quantitative 
parameters for measuring probability of the fact the DUV is functional and free of 
bugs. Together with random test generation, coverage measurement can be used as a 
driver for extra test pattern generation until desired aggregate coverage is reached in 
simulation.  
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3.0  SystemVerilog vs. VERA 
As discussed in the previous section, SystemVerilog constructs obviously are not brand new 
and unique when we compare the language with currently used hardware verification 
languages or libraries. Moreover existing languages might have an even bigger spectrum of 
capabilities. Every time a new language is invented, the first questions that developers or 
verification engineers ask are “why I should learn this language, what advantages does it 
have, and how will it simplify my work”. To answer these important questions, we compared 
features available to engineers in the Synopsys VERA language, which is now widely used 
for verification purposes, with equivalent components in SystemVerilog. 
Detailed analysis of language specification showed that SystemVerilog and Vera are very 
similar in language structure, providing the same set of means for verification, including: 

• Program block 
• Classes & Object Oriented Programming 
• Clocking Domains 
• Randomization 
• Assertions 
• Functional Coverage 
• Interface with C 

However both languages have their own pros and cons. These are summarized in Table 1, 
below. 

Table 1. SystemVerilog and Vera Features Comparison 

SystemVerilog VERA 
 Unified language for design and 

verification 
 Connected to HDL via PLI interface 

 Accellera standard and pushed to IEEE for 
standardization 

 Synopsys proprietary 

 Faster simulation  Slower simulation 
 Less verification constructs  Verification needs dedicated 
 Not yet 100% implemented  Available and stable 
 No defined methodology  Methodology defined and implemented 

 
The main advantage of SystemVerilog is the possibility to use the same language for design 
and verification. This results in a good code performance. As shown later, simulation time is 
about 3 times smaller with SystemVerilog than with Vera. The main disadvantage of the 
language is that it is not yet fully implemented and supported by known simulators. 
In the Vera language, slower simulation time is compensated by the existing of a defined and 
implemented verification methodology, making Vera more stable and preferred solution from 
the verification point. 
 
4.0  SystemVerilog Support in Synopsys VCS 7.2 
Synopsys VCS is a compiler and simulator, which is commonly used in IC design flow. It is 
not exceptional in SystemVerilog support on its current stage. SystemVerilog support in VCS 
is currently modeling side oriented, meaning that constructs are dedicated to reducing the 
number of lines of code in the design, and improving model code reliability and readability. 
The constructs include 

• Data definition extension including extra data types taken from C: 
 signed/unsigned integers 
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 enums 
 typedefs 
 data structures (not unions) 
 multi-dimensional arrays 

• Data definition extension including extra data types taken from VHDL: 
 logic 

• Improved operator and function definition syntax: 
 operations such as ++ and -- 
 void functions 
 outputs and inouts in function ports 
 arrays can be passed as parameters of functions 
 explicit return from tasks and functions 

• Important language enhancements:  
 default port connections (which definitely decrease maintainability of the 

design) 
 interfaces 
 always_comb, always_ff, and always_latch procedural statements 
 fork … join, join_any, or join_none thread control statements. 

With a significant focus of the design side support, verification side is left uncovered.  
Table 2 gives a summary of the important verification constructs described in section  2.0 and 
their implementation status in VCS 7.2 

Table 2. Verification Constructs Supported by VCS 

Verification Construct Implementation Status 
Program block Not supported 
Clocking domains Not supported 
Classes and OOP Not supported 
DPI Not supported 
Multithreading Supported 
Interfaces Supported 
Randomization Not supported 
Assertions Supported 
Coverage measurement Supported all but functional coverage measurement 
 
5.0  Benchmark Testbench 
Taking into account the current restrictions for verification constructs, we built a testbench 
where we tried to use as many new language keywords as possible. The second aim was to do 
a performance comparison of SystemVerilog and Vera languages not only in theory, but also 
in practice. The testbench is targeted at verification of a Level 2 Cache Controller and has a 
minimum set of components for testing basic controller functionality. 

 
 
STIMULUS 

 
 
STIMULUS L3 memory 

Responder

DUT 

L2CC RTLAHB Driver 

Config Driver 

Reset Driver 

Figure 6. SystemVerilog Evaluation Testbench Structure 
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The following components compose the testbench (shown in Figure 6): 
• DUT (L2 Cache model written on Verilog),  
• Drivers  

 Reset driver  
 AHB driver 
 Config driver 

• Responder  
• Stimulus (test scenario). 

 
5.1 Implementation 
It is worth mentioning that we were very limited during development and comparison with 
VERA due to poor support of SystemVerilog in VCS. For example we were not able to use 
classes and OOP during development, and were not able to compare means for randomization 
and functional coverage. SystemVerilog features that we were actually able to try in our 
investigation are described below in this section. 
 
• Interfaces 
Write/Read accesses to L2CC are performed using the AHB protocol. L2CC uses the same 
protocol to initiate transactions to the L3 memory. The difference is only in width of buses 
for data, address and control. 
The SystemVerilog interface construct was very helpful here. The widths of all buses are 
defined as parameters, which can be changed at the moment of interface instantiation. The 
AHB bus does not require tri-state or multi-drop interconnect, and therefore it was 
appropriate to model all the bus signals as vector or scalar logic variables.  
 
interface ahb_intf #(parameter HADDR_WIDTH = 32, HDATA_WIDTH = 32,  
                               HBURST_WIDTH = 3, HPROT_WIDTH = 4, 
                               HRESP_WIDTH = 2, HSEL_WIDTH = 2) 
                    (input bit HCLK, HRESETn, bigend); 
 
    // Operation signals 
    logic [HADDR_WIDTH-1:0] HADDR; 
    TTrans HTRANS; 
    logic HWRITE;                   
    TSize HSIZE;              
    logic [HBURST_WIDTH-1:0] HBURST;             
    logic [HPROT_WIDTH-1:0] HPROT;              
    logic [HDATA_WIDTH-1:0] HWDATA; 
    logic [HSEL_WIDTH-1:0] HSEL; 
    logic [HDATA_WIDTH-1:0] HRDATA; 
    logic HREADY;                   
    TResp HRESP; 
    logic [(HDATA_WIDTH>>3)-1:0] HBSTRB; 
    logic HUNALIGN; 
 
    // Arbitration signals 
    logic HBUSREQ;                  
    logic HLOCK;                    
    logic HGRANT;                   
    logic [3:0] HMASTER; 
    logic [3:0] HDOMAIN; 
    logic HMASTLOCK; 
    logic [15:0] HSPLIT; 
 

... 
 

endinterface : ahb_intf 
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Defined variables can be manipulated by tasks in the interface itself. Such tasks can 
implement the execution of a bus cycle by some external bus master, in the same manner as a 
traditional Bus Functional Model (BFM). 

 
interface ahb_intf #(parameter HADDR_WIDTH = 32, HDATA_WIDTH = 32,  
                               HBURST_WIDTH = 3, HPROT_WIDTH = 4, 
                               HRESP_WIDTH = 2, HSEL_WIDTH = 2) 
                    (input bit HCLK, HRESETn, bigend); 

... 
 
    task master_reset; 
     
        while (transfer_in_progress == 1'b1) begin 
        end 
 
        HADDR = 0; 
        HTRANS = IDLE; 
        HWRITE = 0; 
        HSIZE = BIT8; 
        HBURST = 0; 
        HPROT = 0; 
        HWDATA = 0; 
        HMASTER = 0; 
        HMASTLOCK = 0; 
         
        data_queue_size = 0; 
     
    endtask : master_reset 

 
... 

 
endinterface : ahb_intf 

 
• Modports 
Two modports have been used in the testbench. 
Master modport is intended for connection to a bus master. Such a master module should 
directly drive all physical signals in the bus, except the response signals HREADY, HRESP, 
HRDATA. In our testbench, this modport is used to connect AHB driver which initiates 
transactions to the cache controller. The test stimulus is expected to perform different read 
and write cycles by invoking tasks implemented within the AHB interface itself. These tasks 
are invoked through the modport using import task, so that the stimulus does not need to 
make hierarchical name reference to the interface, but instead can work through its named 
port. 
    modport master( 
        input   HCLK, HRESETn, HRDATA, HREADY, HRESP, bigend, 
        output  HADDR, HTRANS, HWRITE, HSIZE, HBURST, HPROT,  
                HWDATA, HMASTER, HMASTLOCK, 
        import  master_reset, 
                master_write, 
                master_read); 

Slave modport is intended for connection to a bus slave. Bus slaves should receive all 
physical signals in the bus, except for their response signals. We used slave modport to 
connect L3 memory responder. 
   modport slave( 
        input   HCLK, HRESETn, HADDR, HTRANS, HWRITE, HSIZE,  
                HBURST, HPROT, HWDATA, HSEL, HMASTER, HMASTLOCK, bigend, 
        output  HRDATA, HREADY, HRESP, 
        import  slave_reset); 

 
• Assertions and properties 
SystemVerilog provides several constructs which can be used to validate behavior of the 
design. A property defines system behavior and can be used for verification as an 
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assumption, a checker, or a coverage specification. In our system we used properties to define 
the expected state of a signal during hard reset, after reset deassertion, and also to define 
dependencies between some signals. 
 
// HSELR should be non X during reset 
property p1; 
  @(posedge clk) hresetb |-> (hselr !== 1'Bx); 
endproperty 
 

... 
 
// HREADYIN should be non X 
property p4; 
  @(posedge clk) (hreadyin !== 1'Bx); 
endproperty 
 
// HSELR shall be asserted together with HSEL only */ 
property p5; 
  @(posedge clk) hselr |-> (hsel == 1'B1); 
endproperty 

 
Assertions follow simulation event semantics for their execution and are executed like a 
statement in a procedural block. The assert statement is used to enforce a property as a 
checker. When the property for the assert statement is evaluated to be true, the pass 
statements of the action block are executed. Otherwise, the fail statement is executed.  
We used assertions to check the expected behavior specified by properties on each simulation 
cycle. In cases when a particular check failed, corresponding error message was displayed. 
a1: asse perty(p1) else $display("p1 check fail"); rt pro

... 
a4: assert property(p4) else $display("p4 check fail"); 
a5: assert property(p5) else $display("p5 check fail"); 

 
• Coverage Measurement 
Since functional coverage is not yet supported, we were not able to compare SystemVerilog 
and Vera in this aspect. However we found it interesting to try assertion coverage which is 
not provided by Vera.  
We used the same properties to evaluate this feature. The cover statement enforces a property 
as a coverage specification.  
c1: cove erty(p1); r prop

... 
c4: cover property(p4); 
c5: cover property(p5); 

At the end of simulation, there is a coverage report for each property which displays the 
number of times the property was attempted, the number of times the property succeeded, and 
the number of times the property failed.  
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5.2 Metrics 
The whole testbench and test stimulus were developed first on Vera language and then on 
SystemVerilog. The time of test execution was measured to compare the performance. The 
metrics that were collected are presented in Table 3 and Figure 7 below: 

Table 3. SystemVerilog vs. Vera Code Size in LOC 

Code Size metrics SystemVerilog Vera 
Environment  

(drivers + 
responder) 

420 LOC 588 LOC 

Stimulus 209 LOC 274 LOC 

Simulation time

0 5 10 15 20 25 30 35

SystemVerilog

Vera

sec

Vera

SystemVerilog

 
Figure 7. SystemVerilog vs. Vera Performance 

Having approximately the same code size for the test environment and stimulus, there is a 
significant increase in code performance for SystemVerilog. Simulation time is about 3 times 
smaller. 
 
6.0  Conclusions and Recommendations 
The main message of our evaluation is that the current SystemVerilog implementation in 
VCS does not allow using the theoretical power of the language for verification purposes, as 
the effort put in SystemVerilog support by Synopsys went to the modeling subset of the 
language. The only exception is the SystemVerilog assertions which can be used as a stand-
alone verification means for protocol checking. Such important verification means as 
separate program block, classes, OOP and functional coverage are currently omitted. 
At the same time, many EDA vendors claim support of SystemVerilog in their products. 
However there is no full support of the language as specified by Accellera in any existing 
tool. Vendors implement a subset of the language, which varies from one product to another. 
It obviously puts significant limitation on portability of the designs, testbenches and tests and 
slows down SystemVerilog adoption in semiconductor manufacturers’ designs and test 
environments. The feedback from EDA vendors for summer 2004 was like:  

• “Full verification support is expected about mid-end of 2005” (Mentor Graphics, 
Cadence) 
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• “Use Native Testbench if you are looking for performance, use Vera if you need 
stable solution” (Synopsys) 

Nevertheless the potential of using the language in verification is huge because of several 
reasons:  

• it is an industry standard, 
• simulation is significantly faster (as was proven by our evaluation, even though we 

used a small subset of dedicated to verification constructs), 
• it incorporates support for modern verification technologies, such as transaction-based 

verification, coverage driven verification, assertion based verification, reference 
verification methodology, which give freedom of choice to verification engineers. 
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